Category Archives: Uncategorized

Thomas Roulet on sustainable publishing models

Knowledge Rights 21 recently published a short video by Thomas Roulet, Professor of Organisational Sociology and Leadership at the Judge Business School at the University of Cambridge. In it, Prof. Roulet discusses the operations of M@n@gement, the no-fee open access journal published by L’Association Internationale de Management Stratégique (AIMS). The journal is a good example of the turn to community-led forms of open access publishing and how publishing can be organised by communities and sustained by professional associations.

This video is reproduced under a CC BY licence and with the permission of Prof. Roulet. The original video was shared on the Knowledge Rights 21 blog here:

Thoth Archiving Network goes live at Cambridge 

Dr Agustina Martínez-García, Head of Open Research Systems, Digital Initiatives

Cambridge University Library (CUL) is piloting participation in the Thoth Archiving Network, which allows small presses to use a simple deposit option to archive their publications in multiple repository locations, creating the opportunity to safeguard against the complete loss of their open books catalogue, should they cease to operate. 

Participation in the pilot has allowed us to explore the implementation of suitable infrastructure, built on interoperable, open, and widely adopted platforms to support discovery, access, and long-term availability of open scholarly works. 

Work done so far 

We are pleased to share that the Cambridge repository platform participating in the Thoth network is now live at, and now includes a full back catalogue of two open monograph publishers. This repository is based on the open-source DSpace software

Through the implementation phase, we have worked very closely with the Thoth technical team to support the implementation and testing of standard and automated deposit mechanisms into DSpace-based repositories. This work has allowed us to further our knowledge and expertise on scholarly and research platforms by using well adopted repository platforms (DSpace) in a new area: open access books and monographs. It has also provided us with the opportunity to test the implementation of additional infrastructure to support discovery, access, and dissemination of such open access content, and potentially experiment with other types of scholarly work. 

What’s next 

Now that the repository platform is live, we would like to gather insights about volume of content, required storage and staff resources (both infrastructure and user support). This will help us estimating associated costs for provision of such a service as well as preservation costs for the longer term, during the 3-year pilot.  

In terms of long-term preservation, we will explore several preservation options, including preserving the content in-house as part of the Libraries’ wider Digital Preservation Programme. The types of material hosted in this platform can provide an exemplary use case of scholarly content that is “preservation ready”, uses open and standard file formats (i.e., PDF and epub) and is accompanied by rich, high quality descriptive metadata. 

See this post by the Open Book Futures Team for more details about the pilot:

Formatting the Future: Why Researchers Should Consider File Formats

Dr Kim Clugston, Research Data Coordinator, OSC
Dr Leontien Talboom, Technical Analyst, Digital Initiatives

Many funders and publishers now require data to be made openly available for reuse, supporting the open data movement and value for publicly funded research. But are all researchers aware of why they are being asked to share their data and how to do this appropriately? When researchers deposit their research data into Apollo (the University of Cambridge open access repository) they generally understand the benefits of sharing data and want to be a part of this. These researchers provide their data in open file formats accompanied by rich metadata so the data has the best chance of being discovered and reused most effectively. 

There are other researchers who deposit their data in a repository during the publication process; this often takes place within tight deadlines set by the publisher. For this reason, researchers often rush to upload their data, and thoughts about how this data will remain preserved and accessible for long-term use are not considered. The challenges around preserving open research data were highlighted in this article. The authors addressed the concerns that open research data can include a wide variety of different types of data files, some of which may only be accessible with proprietary software or software that is outdated or at risk of being outdated soon. How can we ensure that research data that is open now stays accessible and open for use for many years to come? 

In this blog, we will discuss the importance of making data open, ensuring this is maintained for future use (digital preservation). We will use some examples from datasets in Apollo and suggest recommendations for researchers that go beyond the normal FAIR principles to include considerations for the long term. 

Why is it important for the future?

The move to open data, following the FAIR principles, has the potential to boost knowledge, research, collaboration, transparency and decision making. In Apollo alone, there are now thousands of datasets which are available openly worldwide to be used for reference or reused as secondary data. Apollo, however, is just one of thousands of data repositories. It is easy to see how this vast amount of archived data comes with great responsibility for long term maintenance. A report outlined the pressing matter that FAIR data, whilst addressing metadata aspects well, doesn’t really address data preservation and the challenges that this brings such as the risk of software and/or hardware becoming obsolete, and therefore data reliant on these becoming inaccessible.

Tracking the reuse of datasets could provide essential information on how different file formats are holding up, but there is an ongoing challenge to track dataset reuse. Datasets are not yet routinely cited in the established way that is seen for journal articles or other publication types. This is an area that is actively being developed through initiatives such as Make Data Count and it is hoped that at some point soon, data citation will become part of the routine practice of research to further enhance visibility on how data is being credited and reused. 

In Apollo, we see great interest in the available datasets as they are viewed and downloaded frequently. The most downloaded dataset in Apollo has been downloaded over 300,000 times since it was first deposited in 2015 and, interestingly, consists of open file formats. Other highly downloaded datasets in Apollo, such as the CBR Leximetric dataset, have been used by lawyers and social scientists and successfully cited as a data source to answer new research questions. The Mammographic Image Analysis Society database was deposited in Apollo in 2015 and has been frequently downloaded and reused by researchers working in the field of medical image analysis as discussed in a previous blog. To date, Google Scholar reports it has been cited 78 times. These datasets show the value of sharing and reusing data and all are in file formats that are accessible to everyone which will help to preserve them for as long as possible. 

Digital preservation is a discipline focused on providing and maintaining long-term access to digital materials. Obsolete software is a big problem in maintaining access to files in the future. PRONOM, a file format registry, keeps track of a large amount of known file formats and provides additional information on these formats. Last year, a file format analysis of datasets in Apollo was conducted to highlight what file formats are represented in the repository. The results revealed the diverse array of different file formats which is a testament to the breadth of research conducted and the adoption of open data across many disciplines. Most of the file formats are common and can still be opened, but a large percentage of the material has not been identified or are in formats that are not immediately accessible without migrating to a different format or emulating the current file formats. Table 1 shows a few complex examples of file formats held in Apollo. 

File FormatExample in ApolloFuture Use
.dx (Spectroscopic Data Exchange Format)LinkThis is not an open-source format, meaning that opening the file is dependent on the software being available
.mnova (Mestrelab file format)LinkProprietary file format, licence for the programme is expensive
.pzfx (Prism file format)LinkOlder format for a file software program called Prism. This is now considered legacy software.

The Bit List, a list maintained by the Digital Preservation Coalition that includes contributions from members of the digital preservation community, outlines the “health” of different file formats and content types,  including research data. In fact, unpublished research data (which is another issue outside the scope of this blog!) is classified as critically endangered and uncovers the problem that the majority of researchers generally only make data open at the point of publication. But even research data published in repositories has its difficulties and is classified as vulnerable, mainly due to the dependency on many file formats having the availability of the appropriate software to open and use them. There are potential solutions on the horizon to address this problem, such as the open-source ReproZip which packages research data with the necessary files, libraries and environments so they can be run by anybody. However, this still doesn’t address the issue of obsolete software. The gold standard would be to deposit research data in open formats, so viewing and using the files is not dependent on a particular software; the files will be open and accessible as long as they are held available within a repository.  

What researchers can do

What can researchers do to make sure that when they deposit data into a repository, it will be available for them and others in 10 or even 20 years time? Awareness is the first step. Researchers should consider submitting their data to a repository, one that is suitable for their files. Choose a trusted data repository. A recent blog highlighted the potential problem of disappearing data repositories, with approximately 6% of repositories listed on the repository search registry, re3data being shut down (most reasons are unknown but some were listed as organisation or economic failure, obsolete software/hardware or external attacks). Approximately 47% of the repositories that had shut down did not provide an alternative solution to rescue the data and it is assumed that this data is lost. It may be that your funder or publisher decides the repository for you, but we have some guidance on what to look for in a trusted repository. If you are at Cambridge, you can deposit your data in Apollo which has CoreTrustSeal certification.

The data itself is arguably the most important factor, we need to make sure the data files can be found and used by anyone at any time, forever. Ideally, this means using open file formats where possible as these don’t have any restrictions. The Library of Congress and the UK National Archives both maintain registries of file formats. There is some Cambridge University guidance on choosing file formats as well as some by the UKDS. Have a look at the file formats you have on the PRONOM database, is this seen as a sustainable format? If the data you are generating is from proprietary software, it is good practice to deposit this version as well as an open format that does not require any specialist software to open them. This ensures that both options are available in case of any loss of formatting from converting to open formats. An example are the statistical software packages SPSS and NVivo which are proprietary but have the option to convert to open formats such as a CSV file. 

There may be information on how to convert your file types to open formats within your discipline. In the Chemistry department here at Cambridge, an initiative was started together with the Data Champion programme to provide a platform to allow researchers to add instructions for converting experimental derived files into open formats. Open Babel is an open-source, collaborative project aimed at providing a “chemistry toolbox” with information on how to convert chemical file formats into other formats where needed. There is also some guidance on how to export from R to open formats such as txt and csv.

In some cases, it might not be possible to provide an open file format alternative. The files you use may be subject to discipline-specific standards or you are restricted by the hardware and software you use in your research. For these, it is important to provide good documentation or a detailed README file alongside the file format so researchers know how to access and use your files. In fact good file organisation, documentation and metadata is just as important as the files themselves, as data without any documentation is considered virtually meaningless. The more information you can provide the better and might possibly save you time in the long run from potential questions from other researchers in the future. 

The future use of past research hinges on the thoughtful selection of file formats. By prioritising openness and longevity, we lay the foundation for collaboration and innovation. Choices that researchers make today shape the accessibility and integrity of data for generations to come.